نامساوی گراس برای نگاشت های کاملا کراندار

thesis
abstract

چکیده ندارد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

یک رابطه ماتریسی برای نامساوی گراس

در این رساله به این موضوع پرداخته می شود، که نامساوی اثر یک ماتریس می تواند به عنوان یک نسخه غیر جابجایی در نظر گرفته شود که از نامساوی گراس ناشی می شود. به سادگی اثبات حالت کلی تری از یک عملگر خطی کراندار روی یک فضای هیلبرت تعمیم داده می شود.

بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها

در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده‌ است. در پایان نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.

full text

فشردگی صفر مجموعه های کراندار اصلی در فضاهای کاملا منظم

ما در این پایان نامه‏، خواص اساسی صفر مجموعه های پر را مطالعه می کنیم و به دنبال یافتن این هستیم که چه زمانی یک صفر مجموعه ی پر کراندار‏، فشرده می شود. برای این منظور قضایایی از اسپنسکی و مک آرتور را تعمیم می دهیم تا به این حقیقت برسیم که هر صفر مجموعه ی پر کراندار در فضای x فشرده است در صورتی که یا x یک g-قطر منظم داشته باشد و یا x یک فضای بئر باشد به طوری که هر پوشش باز آن یک تظریف باز نقطه-م...

نامساوی میانگین های حسابی - هندسی

در این مقاله، ضمن ارائه اثباتهایی از نامساوی میانگین های حسابی - هندسی، چندین کاربرد آن را بیان می کنیم. به علاوه میانگین های مهم دیگری را معرفی نموده، به توصیف تعمیم های مهم این نامساوی در جبر ماتریس ها و جبر عملگرها می پردازیم.

full text

نامساوی برنشتاین برای متغیرهای تصادفی وابسته

در این مقاله، نامساوی برنشتاین را برای متغیرهای تصادفی وابسته تعمیم می دهیم. سپس در رابطه با شرایط برقراری همگرایی کامل با استفاده از این نامساوی نتایج جالبی را به دست می آوریم. مثالهای متنوعی نیز در ادامه ارائه خواهیم کرد.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه لرستان - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023